A Riemannian approach to anisotropic filtering of tensor fields
نویسندگان
چکیده
Tensors are nowadays an increasing research domain in different areas, especially in image processing, motivated for example by DT-MRI (Diffusion Tensor Magnetic Resonance Imaging). Up to now, algorithms and tools developed to deal with tensors were founded on the assumption of a matrix vector space with the constraint of remaining symmetric positive definite matrices. On the contrary, our approach is grounded on the theoretically well-founded differential geometrical properties of the space of multivariate normal distributions, where it is possible to define an affine-invariant Riemannian metric and express statistics on the manifold of symmetric positive definite matrices. In this paper, we focus on the contribution of these tools to the anisotropic filtering and regularization of tensor fields. To validate our approach we present promising results on both, synthetic and real DT-MRI data.
منابع مشابه
Left-Invariant Riemannian Elasticity: a distance on shape diffeomorphisms ?
In inter-subject registration, one often lacks a good model of the transformation variability to choose the optimal regularization. Some works attempt to model the variability in a statistical way, but the re-introduction in a registration algorithm is not easy. In [1], we interpreted the elastic energy as the distance of the Green-St Venant strain tensor to the identity. By changing the Euclid...
متن کاملRiemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images
In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in...
متن کاملA Novel Integrated Approach to Modelling of Depletion-Induced Change in Full Permeability Tensor of Naturally Fractured Reservoirs
More than half of all hydrocarbon reservoirs are Naturally Fractured Reservoirs (NFRs), in which production forecasting is a complicated function of fluid flow in a fracture-matrix system. Modelling of fluid flow in NFRs is challenging due to formation heterogeneity and anisotropy. Stress sensitivity and depletion effect on already-complex reservoir permeability add to the sophistication. Horiz...
متن کاملMathematical Foundations of Computational Anatomy ( MFCA ' 06 )
In inter-subject registration, one often lacks a good model of the transformation variability to choose the optimal regularization. Some works attempt to model the variability in a statistical way, but the re-introduction in a registration algorithm is not easy. In [1], we interpreted the elastic energy as the distance of the Green-St Venant strain tensor to the identity. By changing the Euclid...
متن کاملGeneric Local Uniqueness and Stability in Polarization Tomography
The problem of polarization tomography is considered on a Riemannian manifold. This problem comes from the physical problem of recovering the anisotropic part of the dielectric permittivity tensor of a quasi-isotropic medium from polarization measurements made around the boundary, but is more general. In greater than three dimensions local uniqueness and stability are established for generic ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 87 شماره
صفحات -
تاریخ انتشار 2007